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Understanding the topology of complex systems abstracted to networks is important for unraveling their
functional capabilities. Many such networks follow the small-world and scale-free regimes. Several models of
artificially growing networks lead to this observed network topology. Most previously proposed models for
growing networks, such as rich-get-richer and duplication-divergence, produce realistic network topologies but
do not consider the effects of exogenous forces such as optimization for adaptation in shaping network
topology. It is likely that such forces have shaped complex systems throughout their evolution. To develop
further insights into possible mechanisms that shape networks, a model that uses several previously proposed
network growth algorithms was developed to grow networks that adapt under exogenous stress. A decision tree
problem was used to generate a complex Boolean function. Growing networks were required to adapt to
correctly decode this function using an evolutionary selection process. Under this growth regimen all growing
network models are similarly adaptable. The newly added nodes tend to cluster into pathways emanating from
few inputs, regardless of the growth algorithm. Distribution of redundant pathways from inputs to the output
follow a power-law function with a scaling exponent ��1.3�. Similar distribution of redundant pathways was
observed from inputs in a cell signaling network and an air traffic control network. A flat distribution of
redundant pathways from inputs was observed in growing networks that do not attempt to adapt. This analysis
provides initial insights into distribution of pathways in naturally evolving complex systems that have defined
input-output relationships.
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I. INTRODUCTION

Many complex systems can be abstracted to networks.
For example, biological cellular components such as proteins
are represented as nodes, and links describe their interac-
tions. Other real-world examples include coauthorship of sci-
entific papers �1�, the world wide web linked web pages �2�
and the Internet, connecting computers through Internet Pro-
tocol �IP� �3�. Most biological and nonbiological real-world
networks are found to be “small world” �4� and “scale free”
�5�. These include the protein-protein interaction networks of
yeast �6,7� and fruit fly �8�, metabolic networks of prokary-
otes �9�, and gene regulation networks in Escherichia coli
�10�. Small-world networks have relatively high clustering
coefficients and short characteristic path lengths �4� com-
pared to randomized networks. The scale-free feature indi-
cates that the nodal connectivity follows a power-law distri-
bution �5� wherein there are a few but substantial number of
highly connected hubs while most nodes have few links. Dif-
ferent algorithms have been proposed to explain the growth
process that gives rise to observed topologies �11–16�. These
algorithms use simple rules for stochastic growth of net-
works. Starting with a seed network made up of a few nodes
and links, the networks grow in nodes and links and eventu-
ally reach a size where the network displays the small-world/
scale-free characteristics. Most algorithms for network
growth �11–16� do not consider exogenous forces that influ-
ence the development of the topological structure of complex
systems abstracted to networks. Thus, in these models, all
nodes have only intrinsic roles. However, it is clear that in-
formation processing networks, such as biological cellular
regulatory signaling networks have defined inputs and out-

puts. These networks respond to changes in the extracellular
environment and evoke phenotypic changes. Hence, it is rea-
sonable to assume that their evolving topology may be
shaped by signals from the extracellular environment. Other
real-world networks, such as air traffic control networks are
expected to become optimized to geographical parameters
like population density, geometry, and terrain as they evolve.
Developing models of network growth that include adapta-
tion may be useful in understanding how realistic network
topologies emerge. Further, since such networks have
defined input-output relationships it is important to know
how paths from inputs to outputs are distributed. To address
this question previously proposed network growth models
were extended to include inputs and outputs, as well as de-
cision making capabilities. These network models were com-
pared for emergent topologies resulting from growth under
stress, and the ability of the resultant networks to process
information.

II. METHODS

The Restaurant Problem �17� is a classical hypothetical
problem used to illustrate concepts of machine learning. The
problem describes a decision process by which restaurant
guests who have just arrived at a restaurant need to decide
whether to wait for a table or go elsewhere. The decision is
made based on answers to several questions such as the ap-
proximate waiting time, and the weather outside. The restau-
rant problem decision tree was used to create a complex
Boolean function from the problem description �Figs. 1�a�
and 1�b��. This function was chosen because its output ex-
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hibits a nontrivial structure. For example, some inputs are
more influential in determining the output than others. Each
of the ten binary inputs corresponds and decodes either one
question or part of a question from the decision tree. Ques-
tions with more than two answers are decoded with two in-
puts. For example, the “Patrons?” �Fig. 1�a�� question is de-
coded by inputs 1 and 2, such that 00 means none, 01 means
some, 10 means full, and 11 is not a valid option. The func-
tion has ten binary inputs �attributes� and one corresponding
binary output �class�

IOrel = �Attr1, . . . ,Attr10,Class� . �1�

This equation produces 210 input/output relationships. A
number of inputs/output relationships �i.e., 100� were chosen
randomly to create training sets. This complex Boolean func-
tion is used to train growing and adapting networks.

Growing network models attempt to decode correctly a
set of examples randomly picked from the Boolean function
solution space. The networks adapt to decode correctly ex-
amples through an evolutionary strategy growth process
�18�. The growing networks are connected undirected graphs

G = �Vs,Vc,Vt,E� , �2�

with a fixed number of source nodes �vertices�: Vs

= ��1
s , . . . ,�n

s�, a variable number of core nodes: Vc

= ��1
c , . . . ,�m

c �, and one target node �sink�: Vt= ��t�. The nodes
are connected by a set E of edges �links�. This setup is simi-
lar to an array of cell surface receptors �inputs� connected
through multiple core nodes �transducers� and a downstream
transcription factor �effector/output�. The seed network is a
network �undirected graph� where each source node is
linked, with one link �edge�, to a unique core node

ei = ��i
s,�i

c�, i = 1, . . . ,n . �3�

Each core node is directly linked, with one link, to the single
sink target node

ei = ��i
c,�t�, i = n + 1, . . . ,n + m . �4�

In this implementation, source nodes represent n=10 inputs
directly connected to m=10 core nodes connected to one
output sink node �Fig. 2�a��.

These seed networks grow using three previously de-
scribed algorithms: duplication/divergence �DD� �12,13�,
scale free �SF� �11�, and exponential �EXP� �11�.
Duplication/divergence networks grow by duplicating a ran-
domly selected core node with its links, and then removing
some of the links from the newly generated node

Vnew
c = Vold

c � ��new
c � , �5�

such that

�Neighbors��new
c �� � �Neighbors��rand�1,. . .,m�

c �� . �6�

The set of Neighbors �nodes that are directly connected to
the specific node� of the newly added nodes is a subset of the
Neighbors of a randomly chosen node that is copied. When a
node is duplicated there is also a chance that the newly cre-
ated node will also have a link to the node it was copied
from. The algorithm for this growth process uses the prob-
abilities p=0.1 for connecting the new node with the copied
node and the probability p=0.7 for removing new links
�neighbors� from the newly generated node. These p values
were chosen because they were used to generate a network
similar to the protein-protein interaction network of Saccha-
romyces cerevisiae �12�. Additionally, a rule was added to

FIG. 1. A schematic representation �adapted from Russell and Norvig �17�� �a� of the decision making process in the “restaurant
problem,” and the conversion of the decision tree to a Boolean function �b� and �c�. The problem describes a scenario where patrons enter
a restaurant and then must make a decision whether to wait for a table �Yes� or leave �No� through a series of ten questions.
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ensure that newly generated copied nodes are not isolated.
New nodes must have at least one path to one source node,
and at least one path to the target node. This rule was used
for all three growing networks methods.

The scale-free networks �SF� grow by randomly adding
one new core node �Eq. �5�� and connecting it to any other
two or three existing nodes �with probability p=0.5�

Enew = Eold � ���new
c ,�i

c�,��new
c ,� j

c��, or

Enew = Eold � ���new
c ,�i

c�,��new
c ,� j

c�,��new
c ,�k

c�� . �7�

The preferential attachment probability selects nodes for
making a connection to the new node based on their current
connectivity

pi =
ki

�
j=0

m

kj

, �8�

where ki is the number of Neighbors directly connected
�number of edges� to the existing core node �i

c. Barabasi and
Albert showed that this model produces scale-free networks
�11�. The exponential �EXP� networks, also introduced by
Barabasi and Albert, follow the same growth rules as the SF
networks, except that here the probability of connecting new
node to any existing nodes is even

pi =
1

m
. �9�

Barabasi and Albert showed that networks that grow with
this rule display connectivity distributions that follow an ex-
ponential distribution �11�.

Adding one node to a growing network is considered one
generation. In each new generation, several alternative net-
works �Nalt� are generated with one additional core node. The
fitness of each new network is evaluated by the network’s
ability to decode correctly a training set which consists of
several �i.e., 100� inputs/output known relationships �Eq. �1��
from the “restaurant problem” Boolean function dataset. The
fittest network is then selected, and the process is repeated
until networks grow to a certain size �i.e., 65 nodes� �Fig.
2�b��. The size of 65 nodes was chosen because networks
stop improving their adaptation ability at this size.

The fitness evaluation uses the count of alternative path-
ways from each input node to the output node to determine
the weight of each input. To determine the fitness two strat-
egies were used: The first strategy considers the links to have
a neutral sign. The number of all pathways starting from
input nodes with the value 0 is compared to the number of all
pathways from input nodes with input value 1. If there are
more “1” pathways to the output node, the predicted output
will be 1, and if there are more “0” pathways, the predicted
output will be 0. Thus, the initial network, before adaptation
and growth, is a simple voting function. The second strategy
randomly assigns a sign �+ or −� to each link when the link
is created. The sum of all positive pathways starting from
input nodes with value 1 is added to the sum of all negative
pathways from input nodes with input value 0; this sum is
compared to the sum of all positive pathways starting from
input nodes with value 0 added to the sum of all negative
pathways from input nodes with input value 1. If there are
more positive pathways from “1” inputs and negative path-
ways from “0” inputs the predicted output will be 1, and 0 if
the opposite is true. Positive pathways in addition to contain-
ing positive links may contain an even number of negative
links or no negative links. Negative pathways have an odd
number of negative links. Thus, the algorithms for determin-
ing the output are as follows: The input parameters are a
network G �Eq. �2�� and a set of attributes: I.

I = �Attr1, . . . ,Attrn� . �10�

The algorithm computes the class �either 0 or 1� by use of
the following procedure:

�1� Count number of unique pathways �walks� Wi
from each source nodes to the sink target node

Wi = FindUniquePathsFrom��i
s → �t�, i = 1, . . . ,n .

�11�

�2� Count number of positive pathways and negative
pathways from each input �this step is only needed for the
second implementation�

Wi
+ = FindAllPositivePathsFrom��i

s → �t�, i = 1, . . . ,n .

FIG. 2. Initial network and a network after growth and adapta-
tion. �a� The initial network with ten input nodes and ten core
nodes. �b� An example of a SF model network after a growth period
of 41 generations. For each generation a training set of 100 inputs/
output combinations were used to test 50 optional networks.

TOPOLOGY OF RESULTANT NETWORKS SHAPED BY¼ PHYSICAL REVIEW E 73, 061912 �2006�

061912-3



Wi
− = FindAllNegativePathsFrom��i

s → �t�, i = 1, . . . ,n .

�12�

�3� Assign to each source node its matching input at-
tribute

Ii
s = Attri. �13�

�4� For the first implementation, the total number of
pathways with input 0 is compared to the total number of
pathways with input 1. If there are more pathways with the
input 0 then the Class would be 0, or 1 otherwise; if

	�
i=0

n

Ii
s · Wi
 � 	�

i=0

n

Īi
s · Wi
 �14�

then the Class is 1; else it is 0, where Ī is the complement
of I.

�5� For the second implementation, the total number
of positive pathways with the input 1 and the total number of
negative pathways with the input 0 are compared to total
negative pathways with input 1 and positive pathways with
input 0. If there are more positive pathways with the input 1
and negative pathways with the input 0 then the Class would
be 1, or 0 otherwise; if

	�
i=0

n

Ii
s · Wi

+
 + 	�
i=0

n

Īi
s · Wi

−
 � 	�
i=0

n

Īi
s · Wi

+
 + 	�
i=0

n

Ii
s · Wi

−

�15�

then the Class is 1; else it is 0.
As a control, networks that grow under selective pressure

were compared to networks that grow randomly. For net-
works to grow randomly, in each generation one core node is
added according to the same rules described above without
the fitness and selection process, namely Nalt=1. The ran-
domly growing networks are created to demonstrate that the
evolutionary selection process produces networks that adapt
to the Boolean function better than by chance. Thus, the
randomly growing networks are not expected to improve in
their adaptation as they grow. Randomly growing networks
are growing according to the previously proposed methods
without adaptation such that their topology can be compared
with networks that adapt.

The topological structural features of the adaptation-
driven artificial networks were compared to that of real-
world systems abstracted to networks with many inputs and
one output. For this comparison a biological mammalian
regulatory cellular signaling network and an air traffic con-
trol network were used. Signaling pathways thought to exist
in mammalian hippocampal CA1 neurons were assembled in
silico from known binary interactions extracted from bio-
medical literature to form a connections map �19�. This ab-
stract representation considers biochemical components,
such as proteins, as nodes and binding interactions or enzy-
matic reactions as links. Links represent direct molecular in-
teractions and are associated with an effect. Thus, the net-
work is a partially directed graph with signs on the edges �+
positive, − negative, or 0 neutral�. Neutral links are undi-
rected links where the source/target relationship is not direc-

tional. Alternative pathways from different extracellular
ligands �“inputs”� to the transcription factor cAMP response
element binding protein �CREB�, were counted if the ligand
can reach CREB in a maximum of seven steps through direct
intermediate cellular components �seven nodes and six links�
or less. The transcription factor CREB was chosen because it
is a major driver of activity dependent plasticity in these
neurons. See Ref. �20� for the dataset.

An air traffic control network was constructed from the
FFA �Federal Aviation Administration� NFDC �National
Flight Data Center� Preferred Routes Database �21�. This
network contains 1226 nodes and 2615 links. A list of airport
codes was downloaded from Ref. �22�. A subset list of air-
port acronyms was created by choosing airport codes repre-
senting airports from U.S. states on the Atlantic coast from
Maine �north� to Florida �south�. The subset list contains 148
airports. These airports were used as source nodes to count
potential routes to the destination LAX �Los Angeles Inter-
national Airport�, a major U.S. airport hub on the Pacific
�west� coast. The route strings columns in the database were
broken into pairs, representing links in the network. Nodes in
this network are either airports or flight service stations that
are used to direct small airplanes to follow preferred routes
specified by the NFDC. Potential routes to LAX from east
coast airports were limited to maximum seven hops to reach
LAX.

III. RESULTS

All three models adapt to decode correctly about 80% of
the examples after approximately 30 growth generations with
the first implementation �Fig. 3�a�� and about 85–90 % with
the second implementation �Fig. 3�b��, whereas the randomly
growing networks fail to adapt �decode answers with about
50% correctness, as expected� �Fig. 3�c��. The adaptation
capability of all three model networks does not improve after
approximately 30 generations while the networks continue to
grow.

Several statistical measurements were obtained in order to
quantitatively characterize the growing networks: Character-
istic path length �CPL� �4� is the average length of the short-
est path between any two pairs of nodes, and it measures the
global cohesiveness of networks. The second measure, clus-
tering coefficient �CC� �4�, is the average fraction of links
connecting node’s neighbors, out of all possible “intraneigh-
bors” links. It measures triangles in the network structure.
For all three models, and with the two different implementa-
tions, the CPL are not significantly affected by growth under
selective pressure and they are the same as in the randomly
growing networks �Figs. 4�a�–4�c��. This implies that the in-
tercluster connectivity, or “global sparseness” of networks is
not affected by adaptation.

The CC are similar for the adapted networks and for the
randomly growing SF and EXP networks �Figs. 5�a� and
5�b��, but a higher CC are observed for the DD model adapt-
ing networks �Fig. 5�c��. This implies that a high CC in DD
networks may help to achieve better decoding of the Boolean
function. The increase in the CC due to adaptation is only
observed for the DD model implementation. This observa-
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tion can be explained by the advantage of having one or two
highly connected nodes �hubs�. Hubs can grow in the DD
model by repeated selection of the same node to be dupli-
cated for many generations. Since the selected node is dupli-
cated with its links, and a link to the new node is added,
many triangles are formed, and the CC increases. The new
link has to be added between the new copy and the old one in
order to make a highly connected hub. Since the probability
to add this link is p=0.1, and the probability to select this
specific node for duplication is 1 /m, growing networks with-
out adaptation have low probability to form as many tri-
angles and maximally enlarge the hubs. The required number
of alternative networks �Nalt� which guarantees hub forma-
tion is of order m / p. This explains also the need of many
alternative examples in the DD model for getting high adap-
tation �Fig 3�b��. On the other hand, in the EXP model, al-
ternative networks that extend the mostly connected nodes
are created randomly in 3/m of the alternative configura-
tions. Thus, the required number of examples is of order
m /3, and Nalt=50 gives similar results to those of Nalt=500.
In the SF model, the chance of choosing a hub for being
linked to the newly created one is even higher. The hubs in
the SF and EXP models do not necessarily form triangles and
thus do not increase the CC.

The number of pathways from each input node to the
output node was counted. Inputs were sorted based on the

number of redundant paths from each input to the output.
The most significant difference between the adapted/stressed
networks and the nonadapted stressed networks was ob-
served using this measure. For evolving and adapting net-
works, using the first implementation, the most influential
upstream inputs have the most number of pathways to the
output. Whereas networks growing without adaptation show
flat distributions �Fig. 6�a��. Interestingly, the DD and EXP
model networks grown without adaptation have many more
pathways from their inputs to the output �Fig. 6�a��. This
again can be explained by the selection for hubs and a shift
toward the SF model topology seen in the adapting the DD
and EXP models. Sorting inputs of adapted networks accord-
ing to the number of routes to output yields a power-law
distribution �Fig. 6�b��. This appears to be true for the artifi-
cial networks as well as for the mammalian cellular neuronal
hippocampal regulatory network �19� �Fig. 6�c��, and for the
air traffic network �Fig. 6�d��. The inputs �either ligands or
airports� were sorted by the number of routes emanating
from them to the output node. In both cases few “important”
inputs were observed, which are the root of a high number of
pathways, and many other inputs of lower importance, form-
ing a power-law distribution. Interestingly, all distributions
of pathways best fit a power-law function with a scaling
exponent of approximately 1.3. Thus, pathway distribution,
which is an unique measure for networks with input/output

FIG. 3. Fitness of the network to the restaurant problem decision tree as function of network size. �a� First implementation �unsigned
links� given Nalt=50 alternative steps �empty symbols� or Nalt=500 �filled�. �b� Second implementation. �c� Fitness measurements in
networks growing without fitness test �Nalt=1�.
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nodes, may indicate the presence of exogenous pressure to-
ward a certain functionality of the network throughout its
growth. Additionally, the ratio between positive and negative
pathways, in the artificial networks growing with the second
implementation �Fig. 6�e�� is similar to the distribution of
pathways observed for the signaling network �Fig. 6�f��. The
most influential inputs in the artificial networks �inputs 1 and
2� have more positive pathways than negative pathways to
the output. Similarly, pathways from glutamate have the
most positive compared to negative signaling pathways to
CREB.

IV. DISCUSSION

The analysis presented here suggests that external pres-
sures may affect the topology of real-world networks. Stan-
dard network measures such as CC, CPL, and connectivity
scaling largely do not capture the effects of external pres-

sures. Measuring the counts of redundant pathways from in-
puts to outputs is helpful in identifying the differences be-
tween networks that have grown under exogenous pressure
versus networks that have grown without external pressure.
The results show that the type of growth process used for
adaptation is not critical for the adaptation capability. Net-
works that grow by the rules of all three growth models
adapt similarly. This result is surprising and implies that a
particular growth mechanism may be less important for
shaping the network topology than previously thought. Intu-
itively, one might have expected that the duplication-
divergence model would be the most likely mechanism by
which isoforms are generated in biological networks under-
going evolutionary growth. However, SF growth of biologi-
cal networks has been previously observed in real systems.
The yeast protein-protein interactions network has been

FIG. 4. Characteristic path length �CPL� as function of network
size. �a� SF model, �b� EXP model, and �c� DD model. In all cases
squares represent first implementation �unsigned links� and tri-
angles represent second implementation �signed links�. Empty sym-
bols stand for Nalt=50 and filled for Nalt=500. Random growth is
shown as well. Error bars relate to filled triangles.

FIG. 5. Clustering coefficient �CC� as function of network size.
�a� SF model, �b� EXP model, and �c� DD model. In all cases
squares represent first implementation �unsigned links� and tri-
angles represent second implementation �signed links�. Empty sym-
bols stand for Nalt=50 and filled for Nalt=500. Random growth is
shown as well. Error bars relate to filled triangles at �a�–�c� and also
to random growth at �c�.
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shown to follow scale-free growth as assessed by the age of
components following an evolutionary tree �23�. The results
from the evolutionary tree of yeast protein-protein interac-
tions and our study suggest that although biological networks
may grow through duplication divergence, the external envi-
ronmental pressures combined with network growth through
evolution induces the formation of hubs, which results in a
SF topology.

The results show that pathways in networks with defined
inputs and outputs may tend to cluster underneath the most
influential inputs. Pathways from these influential inputs
reaching target nodes are likely to be overall more positive
than negative. Why would such pathway clustering and se-
lection for positive pathways from few inputs occur during
adaptation? Perhaps, this is because of the hierarchical order-
ing of input nodes resulting in some inputs being canalizing.
Canalizing inputs determine the output regardless of the
other inputs �24�. Concentrating routes from influential in-
puts may be an outcome of naturally evolving complex sys-
tems with canalizing inputs. For example, the first question
in the Restaurant Problem is a canalizing locus because if it
is answered a certain way, the values of all other inputs do
not affect the outcome. In the hippocampal neuronal regula-
tory network most pathways were found to emanate from
glutamate and glycine. These two ligands act as inputs by
binding to �NMDA� receptors which allow the entry of cal-
cium into the cell �25�. Glutamate also binds to metabotropic

receptors which initiate G-protein signaling. The combina-
tions of calcium and G-protein signaling with the evidence
that the NMDA receptor complex is a highly connected
node, containing over 100 potential binding partners �26�,
makes glutamate and glycine potential canalizing inputs.
Analysis of air traffic routes from the east coast of the United
States to Los Angeles showed that the most alternative routes
originate from the New York, New Jersey, and Connecticut
areas. This tristate area is the most densely populated region
on the east coast. In the artificially grown networks as well as
the two real networks the concentration of pathways under
the most influential inputs leads to a power-law distribution
of pathways. Thus, it appears that for directed networks with
defined inputs and outputs “scale-freeness” exist at multiple
levels of organization: at the nodal connectivity level and at
the pathway distribution level.

The approach of building simple artificial network models
that self-organize in response to external stress may be useful
in understanding the origins of the topology of real-world
networks �27�. Such computational efforts may be useful in
integrating molecular biology with system-level phenotypes
to predict the relationship between network topology and
phenotypic behavior even when all the nodes and links are
not known �28�. Thus, such analysis may lead to predictions
of new proteins and interactions and complement other com-
putational strategies used to predict biomolecular interac-
tions �29�.

FIG. 6. Counts of pathways to the output. �a� Artificial networks without selection �SF model�. Average over 100 simulations. Flat
distribution was observed in individual trials. �b� Trained artificial networks �first implementation�. Inputs 1 and 2 decode the “Patrons?”
question �Fig. 1� and show the most pathways to the output. �c� Pathways from ligands to the transcription factor CREB in hippocampal CA1
neurons. Most pathways emanate from glutamate and glycine. �d� NFDC Air traffic control network. �e� Number of unique positive and
negative pathways in the adapted artificial networks using the second implementation. �f� Positive and negative pathways from ligands to
CREB in the neuronal hippocampal CA1 neuron.
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Characterizing networks that have evolved under external
stress through a selection process is helpful in identifying
preferred network topologies. Previous growth models pro-
duce uniform symmetric network topologies, making a new
link a function of local connectivity. In this study the rule of
adaptation was added to the rules of growth. This addition
produces nonsymmetric and more realistic artificial network
topologies. Hierarchical influences of inputs lead to scale-
free growth and topology. Our analysis of artificial networks
suggest that external pressures may have shaped both signal-
ing network in hippocampal neurons, and air traffic patterns
in the United States. It would be interesting to see if other
complex real-world systems with defined inputs and outputs

show similar redundancy of pathways property of network
reorganization.
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